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Abstract. A fast rising flattop high power laser pulse, with Gaussian intensity distribution along its wave-
front, causes single and double ionizations of the gas through which it propagates. The foot of the pulse
causes single ionization of the gas and creates a sharp radial density profile resulting in strong defocusing
of the front part of the pulse. After a little while, single state ionization saturates, creating a flat density
profile in the axial region and weakening the divergence of the pulse. As the intensity of the pulse rises
further, second state ionization occurs, causing strong defocusing of the beam. Later in time when the
second state ionization saturates, the relativistic mass nonlinearity together with the electron cavitation
tends to focus the pulse.

PACS. 52.38.Hb Self-focussing, channeling, and filamentation in plasmas – 42.65.Jx Beam trapping,
self-focusing and defocusing; self-phase modulation

1 Introduction

With the recent advancements in laser technology, laser
systems producing pulses of multi-terawatt power have
become common. These pulses when focused to a micron
spot size with adaptive optics can produce intensities as
high as ≈1021 W/cm2 [1]. The interaction of such a high
power laser pulse with gases and plasmas is a major field of
research because of its application in laser driven fusion,
laser electron accelerator, X-ray lasers, super-continuum
generation, and proton acceleration [2–13]. For many of
these applications, it is required that the laser pulse prop-
agates over many Rayleigh lengths without considerable
energy loss and significant diffraction.

A laser pulse, with an intensity ≥1015 W/cm2, passing
through a gaseous medium can ionize the gas by tunnel
ionization [14,15]. The electric field of the pulse provides
sufficient velocity to electrons to surpass the coulomb bar-
rier of the nucleus and ionize the gas. As the laser intensity
increases, multiple ionizations also occur and the gas be-
comes fully ionized. However, ionization induced diffrac-
tion diverges the laser pulse significantly and restricts the
further ionization of the gas. When the power of the pulse
exceeds the critical power for relativistic self-focusing,
Pc = 17 (ω/ωp)

2 GW, where ω is the carrier frequency
of the laser pulse and ω2

p = 4πe2n0/m is the plasma fre-
quency of the medium (m is the electron mass, n0 is the
plasma electron density), the laser pulse can be relativis-
tically self-focused [16]. However, tunnel ionization can
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defocus the light and increase the self-focusing threshold
by increasing the on-axis density and refractive index. The
laser pulse also exerts a ponderomotive force on the elec-
trons, pushing them away from the propagation axis of
the laser pulse, thereby creating an electron-depleted re-
gion. This process is known as electron cavitation and
assists the process of relativistic self-focusing. The first
experimental observation of relativistic self-focusing was
made by Borisov et al. [17]. They employed a 0.5-ps
0.3-TW pulse at λ0 = 0.25 µm focused into a 7-µm diam-
eter focal spot inside a gas cell; the maximum irradiance
was 8 × 1017 W/cm2. They observed a channel of radius
<1 µm and a peak intensity of ∼1019 W/cm2. They com-
pared their experimental data with theoretical results and
found excellent agreement.

Recently, numerous experiments have been performed
on helium as well as on other gases [18–20]. Chessa
et al. [18] have reported experimental results on intense
short pulse laser interaction with helium gas. They em-
ployed 1.8-ps, terawatt pulses focused to an intensity
of 6 × 1017 W/cm2. At this intensity, helium gas is dou-
bly ionized. They observed different amounts of blue shift
of the laser pulse at different gas pressures. They also
observed a more than five times increase in beam spot
size for propagation over four Rayleigh lengths. Fedosejevs
et al. [19] have reported experiments on many gases in-
cluding helium, hydrogen, nitrogen etc. They employed
a 0.3-TW, 250-fs laser pulse, focused to an intensity of 3×
1017 W/cm2. They observed the relativistic self-focusing
for hydrogen gas. Sarkisov et al. [20] have reported results
on the dynamics of the interaction of a 4-TW, 400-fs pulse
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of intensity 6 × 1018 W/cm2 with a He gas jet. They
observed relativistic self-focusing, channel formation, and
high-energy ion generation.

Essarey et al. [21] have given an extensive review of
the self-focusing and the self-guiding of short laser pulses
in ionizing gases and plasmas within the framework of
the near-axis approximation. Liu and Tripathi [22] have
reported a theoretical framework that accounts for com-
bined effects of laser frequency up-shift, self-focusing, and
ring formation by expanding the eikonal and other rele-
vant quantities to the fourth power in r. In a more recent
paper [16], they have studied the effect of relativistic mass
nonlinearity on self-focusing of a laser pulse in preformed
plasmas. In both papers, their treatment is restricted to
the singly ionized gases. However, the intensities of laser
pulses being used nowadays in experiments are sufficiently
high to cause double ionization of the gas, which could
adversely affect the laser propagation. Moreover at high
intensities, the laser plasma interaction is also relativistic
in nature. So, it necessitates developing a theory, which
includes the effect of double ionization and relativistic ef-
fects simultaneously.

In this paper, we study the relativistic self-focusing of
laser pulses and the effect of electron cavitation in a gas
undergoing laser-induced double ionization. The intensity
is high enough to cause the single ionization almost spon-
taneously. After a little while, the laser pulse produces
double ionization. The inhomogeneity of the electric field
along the wavefront of the laser pulse causes more ioniza-
tion along the propagation axis while less ionization off
axis, leading to a density profile exhibiting a strong gradi-
ent and with its maximum on the propagation axis. The
medium acts like a diverging lens trying to strongly defo-
cus the pulse. However, the ponderomotive force pushes
the electrons out of the laser beam and thereby cre-
ates a plasma channel, which in turn tries to weaken the
ionization-induced divergence of the pulse. When the elec-
tron velocity reaches υosc = 0.1c, the relativistic mass non-
linearity starts dominating and after some time, it may
take over the ionization induced-divergence so that the
pulse self-focuses. We derive the coupled equations govern-
ing the behavior of the plasma density and beam width
parameter in Section 2. We expand the phase (eikonal)
and all other relevant quantities in near-axis approxima-
tion. These equations are solved numerically. The results
are discussed in Section 3.

2 Coupled equations for plasma density
and beam width parameter

Consider the propagation of a laser pulse in a gas jet tar-
get. At the entrance into the gas, z = 0, the circularly
polarized laser field is,

E = (x̂ +iŷ)E0 (r, t) e−iωt,

E2
0 = E2

00 exp
(−r2/r2

0

)
g (t) , (1)

where g(t) is the temporal shape of the pulse. The rate of
tunnel ionization of an atom to the jth state of ionization,

in which j electrons have been removed, is given as

Γj = (π/2)1/2 (Ij/�)
( |E |

Ej

)1/2

exp
(
− Ej

|E |
)

,

j = 1, 2..., (2)

where I1, I2... are the ionization potentials for single, dou-
ble, and higher states of ionization, respectively, Ej =
(4/3) (2m)1/2

I
3/2
j /e� are the characteristic atomic fields,

h = 2π� is the Planck’s constant, |E | is the amplitude of
the laser field, m is the rest mass of an electron, and e is
the magnitude of the electric charge. A similar expression
for tunneling rate can also be obtained by using ADK
(Ammosov-Delone-Krainov) theory [15]. The ionization
of the gas gives rise to a plasma density, n0, changing
in space and time. Let at any instant the densities of
singly and doubly ionized ions be n1 and n2 respectively.
Then n0 = n1 + 2n2. Since the ponderomotive force ex-
pels electrons radially outward, the electron density dis-
tribution gets modified. We define two quantities, ω2

p1 =
ω′2

p1

(
1 −∇2φp/4πen0

)
, ω2

p2 = ω′2
p2

(
1 −∇2φp/4πen0

)
and

write

∂ω2
p1

∂t
= Γ1

(
ω2

pm − ω2
p1 − ω2

p2

) − Γ2ω
2
p1, (3)

∂ω2
p2

∂t
= Γ2ω

2
p1, (4)

where ω′2
p1 = 4πn1e

2/m, ω′2
p2 = 4πn2e

2/m, ω2
pm =

4πnme2/m, nm is the initial density of neutral atoms, φp

is the ponderomotive potential and Γ1 and Γ2 are the ion-
ization rates for single and double ionization, respectively.

Inside the ionizing gas (z > 0),

E = (x̂ + iŷ)A(t, z, r) exp(iφ), (5)

where A is the slowly varying complex amplitude (valid
when ∂E/∂z � kE, ∂E/∂t � ωE, where k is the propa-
gation vector and ω is the frequency of the laser pulse) and
ϕ (t, z) is the fast phase of the wave. We define ω = ∂ϕ/∂t,
k = −∂ϕ/∂z. The laser imparts an oscillatory velocity to
electrons

v =
eE

miωγ
, γ =

(
1 +

e2A2

m2ω2c2

)1/2

. (6)

The laser also exerts a ponderomotive force, Fp = e∇φp,
on the electrons with ponderomotive potential, φp, as

φp = −mc2

e

[(
1 + e2A2/m2ω2c2

)1/2 − 1
]
. (7)

Under this force, electrons move radially outward, creating
a space charge field E = −∇φ. In the quasi-steady state
(a time scale longer than an electron plasma period but
shorter than an ion plasma period), the net force on the
electrons is zero

e∇ (φ + φp) − Te

ne
∇ne = 0, (8)
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where ne is the modified electron density and Te is the
electron temperature. Equation (8) gives

ne = n0 exp [e (φ + φp) /Te] , (9)

using equation (9) in the Poisson equation, ∇2φ =
4πe (ne − n0), we obtain

φ = −φp +
Te

e
ln

(
1 +

1
4πn0e

∇2φ

)
. (10)

For eφp � Te, one may ignore the second term on the
right hand side, hence,

φ ≈ −φp,

ne = n0 +
1

4πe
∇2φ,

= n0

[
1 − 2c2

ω2
pr

2
0

γ2 − 1
γ

(
1 − γ2 + 1

2γ2

r2

r2
0

)]
, (11)

ne is an increasing function of r, having a minimum ne =
n′

0 on axis (r = 0), where

n′
0 = n0

(

1 − 2(γ2
0 − 1)

(
ω2

p0r
2
0/c2

)
γ0

)

, (12)

where γ0 = γ(r = 0), ω2
p0 = ω2

p (t, z, r = 0). The modified
current density of electrons is J = −nee

2E/miωγ. Using
this modified electron density in the wave equation, we get

∇2E− 1
c2

∂2E
∂t2

=
ne

n0

ω2
p

γc2
E, (13)

where ω2
p = 4πn0 e2/m. Substituting for E, we obtain to

successive orders, in the WKB approximation (valid when
∂E/∂z � kE)

ω2 =
n′

0

n0

ω2
p0

γ0
+ k2c2, (14)

2ik
∂A

∂z
+

2iω

c2

∂A

∂t
+ ∇2⊥A + i

∂k

∂z
A =

1
c2

(
ne

n0

ω2
p

γ
− n′

0

n0

ω2
p0

γ0

)

A. (15)

In low-density plasma, the fourth term in equation (15) is
small. Defining t′ = t−z/c, z′ = z and assuming ω2

p/ω2 �
1. Then equation (15) can be written as

2iω

c

∂A

∂z′
+ ∇2

⊥A =
1
c2

(
ne

n0

ω2
p

γ
− n′

0

n0

ω2
p0

γ0

)

A. (16)

We write A = A0 exp (iS), where A0 (t′, z′, r) and
S (t′, z′, r) are real, and separate the real and imaginary

parts of equation (16), we get,

− 2ω

c

∂S

∂z′
A0 +

∂2A0

∂r2
+

1
r

∂A0

∂r
−

(
∂S

∂r

)2

A0 =

1
c2

(
ne

n0

ω2
p

γ
− n′

0

n0

ω2
p0

γ0

)

A0, (17)

ω

c

∂A2
0

∂z′
+

(
∂2S

∂r2
+

1
r

∂S

∂r

)
A2

0 +
∂S

∂r

∂A2
0

∂r
= 0. (18)

We expand S, Γ , γ, ω2
pj, as S = S0 + S2r

2/r2
0 , Γj =

Γj0 + Γj2r
2/r2

0, γ = γ0 + γ2r
2/r2

0, ω2
pj = ω2

pj0 + ω2
pj2r

2/r2
0 ,

i.e. in paraxial approximation (valid when r2 � r2
0). In

this limit equation (18) can be integrated to give [16]

A2
0 =

E2
00

f2
exp

(
− r2

r2
0f

2

)
g (t′) , (19)

where f is the beam width parameter and it is related
to S2 as S2 = (1/2f)(∂f/∂ξ). The parameter ξ is de-
fined as ξ = z′/Rd, where Rd = ωr2

0/c (twice Rayleigh
length). By knowing the value of f , the spot size of the
laser beam at any arbitrary point can be estimated as
= r0f(ξ), where r0 is the initial spot size of the beam.
The condition f > 1 stands for the diverging beam where
as f < 1 stands for the converging beam. The other coef-
ficients involved in the expansions of Γ and γ are

Γj0 = Γj00Gj , Γj00 = (Ij/�) (π/2gj)
1/2 exp (−gj) ,

gj = Ej/E00, Gj = exp (gj − gj1) /f1/2,

gj1 = gjf, Γj2 = − (1 + 2gj1) Γj0/4f2,

γ0 =
(
1 + e2E2

00g(t′)/m2ω2c2f2
)1/2

,

γ2 = −e2E2
00g(t′)/2m2ω2c2γ0f

4.

j = 1 and 2 refer to single and double ionization re-
spectively. Introducing dimensionless quantities υ0/c =
eE00/mωc, T = Γt′, Γ = (I1/�)(π/2)1/2 and collecting
the coefficients of various powers of r in equations (3), (4)
and in equation (17), we obtain

∂ω2
p10

∂T
= exp(−g1f)

(
ω2

pm − ω2
p10 − ω2

p20

)
/ (g1f)1/2

− 1.22 exp (−3.29g1f)ω2
p10/ (g1f)1/2

, (20)

∂ω2
p12

∂T
= − (1 + 2g11)

4f5/2g
1/2
1

exp (−g1f)
(
ω2

pm − ω2
p10 − ω2

p20

)

− exp (−g1f)

(g1f)1/2

(
ω2

p12 + ω2
p22

)

+ 1.22
(1 + 6.58g11)

4f5/2g
1/2
1

exp(−3.29g1f)ω2
p10

− 1.22
exp (−3.29g1f)

(g1f)1/2
ω2

p12, (21)
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∂ω2
p20

∂T
= 1.22

exp (−3.29g1f)

(g1f)1/2
ω2

p10, (22)

∂ω2
p22

∂T
= −1.22

(1 + 6.58g11)

4f5/2g
1/2
1

exp (−3.29g1f)ω2
p10

+ 1.22
exp (−3.29g1f)

(g1f)1/2
ω2

p12, (23)

d2f

dξ2
=

1
f3

−
(
ω2

p12 + 2ω2
p22

)
r2
0f

γ0c2

− r2
0

(
ω2

p10 + 2ω2
p20

)
υ2

0g (t′)
2c4γ3

0f3
− f

(
1 − 1

γ4
0

)
− 2υ2

0g (t′)
c2γ4

0f3
.

(24)

The boundary conditions at ξ = 0 are: f = 1, ∂f/∂ξ = 0,
and S0 = 0. The first two terms on the right hand side of
equation (24) represent divergence due to diffraction and
nonlinear refraction, the third term gives the relativistic
self-focusing, whereas the last two terms include the ef-
fect of electron cavitation. In the absence of the last three
terms the laser pulse would continue to diverge. However,
when the first two terms exactly balance the last three
terms, the pulse propagates without any divergence. We
choose g(t′) = tanh (t′/τ ) for t′ > 0 and zero otherwise,
where τ is the pulse rise time.

We have solved these equations numerically and plot-
ted the beam width parameter, f , as a function of ξ,
at different times, for different laser powers. Figure 1a
shows the variation of beam width parameter, f , with ξ
for Ω2

pm ≡ ω2
pm/ω2 = 0.03. The other parameters are

g1 = 0.4 corresponding to I1 = 24 eV, first ionization
potential of helium, laser intensity IL ≈ 6× 1017 W/cm2,
τ = 50 fs. The foot of the pulse (T = 50 corresponding
to 1 fs) causes single ionization of the gas, which produces
sharp electron density gradient, resulting in a strong defo-
cusing of the pulse. Later in time (T = 200 corresponding
to 4 fs), the pulse produces double ionization of the gas.
It results in the formation of a very strong radial density
gradient, hence severe defocusing of the laser pulse. Later
on (T = 500 corresponding to 10 fs), the density pro-
file flattens and the relativistic mass nonlinearity together
with electron cavitation self-focuses the laser pulse. At a
higher gas pressure, the front part of the pulse faces more
divergence while the later part of the pulse self-focuses
earlier in time (cf. Fig. 1b). At a higher laser intensity
IL ≈ 4 × 1018 W/cm2 (Fig. 2), the laser pulse produces
single as well as double ionization rapidly (the effect of
double ionization appears as early as T = 50). Due to
this, the electron density profile tends to flatten rather
quickly, resulting in less defocusing of later part of the
pulse (T = 100) as compared to the previous case. At
larger times (T = 200 corresponding to 6 fs), the relativis-
tic mass nonlinearity and electron cavitation self-focuses
the laser pulse. At higher gas pressure (Fig. 2b), similar
type of behavior can be noted as in Figure 1b. We have
also plotted the beam width parameter, f , as a function

 
 

(a)

(b)

Fig. 1. Variation of beam width parameter, f , at different re-
tarded times T , with ξ at a laser intensity IL = 6×1017 W/cm2

and υ2
0/c2 = 0.5 (a) for an electron density Ω2

pm = 0.03 (b) for
an electron density Ω2

pm = 0.05. The other parameters are,
ωr0/c = 20, τ = 50 fs and g1 = 0.4 corresponding to the laser
intensity.

of ξ, at different times in a case when only single ioniza-
tion is present in the system (Figs. 3 and 4). A compar-
ison of Figure 1 with Figure 3 shows that at the foot of
the pulse divergence solely comes from the density gradi-
ent caused by the single ionization of the gas. At larger
times (T = 200, Fig. 1), double ionization of the gas oc-
curs, which causes severe divergence of the pulse, which
is completely absent in Figure 3. However at larger times
(T = 500, Fig. 3a), the density profile flattens and the rel-
ativistic mass nonlinearity and electron cavitation start
dominating ionization-induced divergence, the laser pulse
propagates without any significant divergence. A similar
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(a)

(b)

Fig. 2. Variation of beam width parameter, f , at different re-
tarded times T , with ξ at a laser intensity IL = 4×1018 W/cm2,
υ2

0/c2 = 1.5 and g1 = 0.14 corresponding to the laser intensity
(a) for an electron density Ω2

pm = 0.03 (b) for an electron den-
sity Ω2

pm = 0.05. The other parameters are the same as in
Figure 1.

behavior can also be observed at higher laser intensity
(cf. Fig. 4a). At a higher gas pressure, the later part of
the pulse (T = 300, 500 in Fig. 1b) self-focuses. However
in the case of single ionization (Fig. 3b), the part cor-
responding to T = 300 still faces mild divergence. Since
double ionization produces twice as much electron density
as single ionization. The last three terms in equation (24)
start dominating over first two terms very early result-
ing in self-focusing of the pulse at lower times. The same
type of behavior can also be noted at higher laser intensity
(cf. Figs. 2b and 4b).

(a)

(b)

Fig. 3. Variation of beam width parameter, f , at different
retarded times T , with ξ in a case when only single ionization is
present in the system at a laser intensity IL = 6×1017 W/cm2,
(a) for an electron density Ω2

pm = 0.03 (b) for an electron
density Ω2

pm = 0.05. The other parameters are the same as in
Figure 1.

3 Discussion

A fast rising flattop Gaussian laser pulse with peak
intensity IL ≥ 1017 W/cm2, produces single ionization
of the He gas rapidly. At the foot of the pulse, single
ionization produces a sharp electron density profile
resulting in strong defocusing of the pulse. As the
intensity of the pulse rises, single ionization saturates
but double ionization causes strong radial density gra-
dient and severe defocusing of the pulse. On a longer
time scale, t′ = 500Γ−1 (of the order of a few laser
periods), when double ionization saturates in the axial
region and acquires a substantial level in the non-axial
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(a)

(b)

Fig. 4. Variation of beam width parameter, f , at different
retarded times T , with ξ in a case when only single ionization is
present in the system at a laser intensity IL = 4×1018 W/cm2

(a) for an electron density Ω2
pm = 0.03 (b) for an electron

density Ω2
pm = 0.05. The other parameters are the same as in

Figure 1.

regions, the relativistic mass nonlinearity along with
electron cavitation dominates the ionization induced
divergence and the pulse self-focuses. At a higher in-
tensity of IL ≈ 1018 W/cm2, the laser pulse produces
single as well as double ionization of the gas very quickly,
due to which defocusing and flattening of the density
profile take place in a short period of time. Thereafter
the relativistic mass nonlinearity and electron cavitation
dominate the ionization-induced divergence and the pulse

self-focuses. At a higher gas pressure, the relativistic mass
nonlinearity and electron cavitation dominate ionization-
induced divergence very early resulting in the self-focusing
of the laser pulse at lower time. In this paper we have not
assumed the axial inhomogeneity in gas jet profile. How-
ever, if it exists then the various ω2

pj in equation (24) would
be a function of z′ resulting in different rates of defocus-
ing and focusing during the course of the propagation. The
present treatment is valid in paraxial ray approximation.
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